This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Two lead coordination polymers with nitrilotriacetic acid and oxydiacetic acid: synthesis, characterization, and crystal structure

 Ping Zhang ${ }^{\text {a }}$; Li-Rong Zhang ${ }^{\text {a }}$
${ }^{\text {a }}$ Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun 130012, China ${ }^{\text {b }}$ School of Chemical and Material, Dalian Polytechnic University, Dalian 116034, China

First published on: 06 July 2010

To cite this Article Chen, Yan-Li , Wang, Li , Yu, Lian-Xiang, Fan, Yong, Shi, Jing, Yang, Hong , Jiang, Jin-Hua , Wang, Wei, Zhang, Ping and Zhang, Li-Rong(2010) 'Two lead coordination polymers with nitrilotriacetic acid and oxydiacetic acid: synthesis, characterization, and crystal structure', Journal of Coordination Chemistry, 63: 12, 2079 - 2087, First published on: 06 July 2010 (iFirst)
To link to this Article: DOI: 10.1080/00958972.2010.497917
URL: http://dx.doi.org/10.1080/00958972.2010.497917

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.
```


Two lead coordination polymers with nitrilotriacetic acid and oxydiacetic acid: synthesis, characterization, and crystal structure

YAN-LI CHEN \dagger, LI WANG \dagger, LIAN-XIANG YU \dagger, YONG FAN \dagger, JING SHI \ddagger, HONG YANG \dagger, JIN-HUA JIANG \dagger, WEI WANG \dagger, PING ZHANG* \dagger and LI-RONG ZHANG \dagger
\dagger Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Department of Chemistry, Jilin University, Changchun 130012, China \ddagger School of Chemical and Material, Dalian Polytechnic University, Dalian 116034, China

(Received 11 January 2010; in final form 30 March 2010)

Abstract

Two lead coordination compounds $\left[\mathrm{Pb}_{2}(\mathrm{nta})\right] \mathrm{NO}_{3}$ (1) and $[\mathrm{Pb}(\mathrm{oda})]$ (2) have been synthesized by slow evaporation or hydrothermal conditions using nitrilotriacetic acid (nta) and 2,2'oxydiacetic acid (oda) as ligands, respectively. Their structures were determined by single-crystal X-ray diffraction and further characterized by X-ray powder diffraction, infrared absorption spectrum, and thermogravimetric analysis. Compound $\mathbf{1}$ is a 2-D honeycomb-like layer structure with $(6,3)$ topology. When the bonding limit of $\mathrm{Pb}-\mathrm{O}$ extends from 2.76 to $2.90 \AA$, potential weak $\mathrm{Pb}-\mathrm{O}$ bonds can be found in $\mathbf{1}$, and the 2-D layer structure can be further linked to generate a 3-D 4-connected supramolecular sra net with the ($4^{2} .6^{3} .8$) Schläfli symbol. Compound 2 contains a 1-D infinite $\mathrm{Pb}-\mathrm{O}$ chain which is connected through $\mu_{3^{-}}, \mu_{4^{-}}$, and μ_{5}-coordination modes of oda to form a new 3-D structure.

Keywords: Coordination polymer; Lead; Nitrilotriacetic acid; 2,2'-Oxydiacetic acid

1. Introduction

Coordination polymers of lead receive attention because of their structural diversity and potential applications in nonlinear optics, ion exchange, luminescence, and biological activity [1-6]. Lead, bearing a stereochemically active 6 s electron pair and large radius, can adopt variable coordination numbers ranging from 2 to 10 and versatile coordination modes such as hemidirected and holodirected geometries providing opportunity for the construction of coordination compounds [7].

Among lead coordination polymers, most products contain rigid ligands, for example, aromatic polycarboxylates, pyridyl carboxylic acids, aromatic ketones, and their N -oxide derivatives [8-14], while only a few examples have flexible ligands, such as citric acid, tartaric acid, N,N-bis[(6-carboxypyridin-2-yl)-methyl]ethylamine, and

[^0]$2,2^{\prime}$-oxydiacetic acid (oda) [15-18]. In our research, two flexible ligands, nitrilotriacetic acid (nta) and 2,2'-oda, are used to construct lead coordination polymers. Many coordination polymers containing nta and oda build frameworks with rare earth metals [16-23], transition metals [24-28], and alkaline earth metals [29, 30], but compounds with lead are less reported [31, 32]. Herein, we report two lead coordination polymers, $\left[\mathrm{Pb}_{2}\right.$ (nta) $\left.)\right] \mathrm{NO}_{3}(\mathbf{1})$ and $[\mathrm{Pb}($ oda $)]$ (2), with nta and oda. Compound $\mathbf{1}$ was synthesized by slow evaporation and $\mathbf{2}$ by hydrothermal synthesis. Compound $\mathbf{1}$ is a 3-D 4-connected supramolecular sra framework with the $\left(4^{2} .6^{3} .8\right)$ Schläfli symbol and 2 is a 3-D structure containing a $1-\mathrm{D}$ infinite $\mathrm{Pb}-\mathrm{O}$ chain.

2. Experimental

2.1. Materials and instrumentation

All chemicals were obtained from commercial sources and used without purification. Powder X-ray diffraction (XRD) data were obtained using a Shimadzu XRD-6000 diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation $(\lambda=1.5418 \AA$). IR spectra were recorded from 400 to $4000 \mathrm{~cm}^{-1}$ on a Nicolet Impact 410 spectrometer, using KBr pellets. Thermogravimetric analyses (TGAs) were conducted on a Perkin Elmer TGA 7 thermogravimetric analyzer in air with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

2.2. Synthesis

2.2.1. Synthesis of $\left[\mathbf{P b}_{\mathbf{2}} \mathbf{(n t a)}\right] \mathbf{N O}_{\mathbf{3}}$ (1). A mixture of $\mathrm{H}_{3} \mathrm{nta}(0.096 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\left(3 \mathrm{~mL}, 0.5 \mathrm{mmol} \mathrm{mL}{ }^{-1}\right)$ dissolved in 5 mL of distilled water was added to an aqueous solution $(5 \mathrm{~mL})$ of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.0829 \mathrm{~g}, 0.5 \mathrm{mmol})$. After stirring for 30 min , the solution was concentrated by slow evaporation for a week, colorless crystals of $\mathbf{1}$ were obtained (yield $=69 \%$ based on Pb). IR (KBr pellet, cm^{-1}): 3015(w), 2362(w), 1633(s), 1544(s), 1490(m), 1367(s), 1297(m), 811(s), and $578(\mathrm{~m}) \mathrm{cm}^{-1}$.
2.2.2. Synthesis of $[\mathbf{P b}($ oda $)]$ (2). A mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.0415 \mathrm{~g}, 0.25 \mathrm{mmol})$, oda ($0.0335 \mathrm{~g}, 0.25 \mathrm{mmol}$), $\mathrm{NaOH}(0.020 \mathrm{~g}, 0.5 \mathrm{mmol})$, triazole ($0.035 \mathrm{~g}, 0.5 \mathrm{mmol}$), and 9 mL of water was sealed in a 23 mL Teflon-lined stainless steel container and heated to $170^{\circ} \mathrm{C}$ for 3 days. After cooling to room temperature, colorless crystals of 2 were obtained (yield $=56 \%$ based on Pb). IR (KBr pellet, cm^{-1}): 2910(w), 1556(s), 1421(m), $1341(\mathrm{~m}), 1303(\mathrm{~s}), 1118(\mathrm{~s}), 1035(\mathrm{~s}), 918(\mathrm{~s}), 728(\mathrm{~s})$, and $552(\mathrm{~s}) \mathrm{cm}^{-1}$.

2.3. Crystal structure determination

Single crystals of $\mathbf{1}$ and $\mathbf{2}$ with suitable dimensions were mounted onto thin glass fibers. Intensity data were collected on a Rigaku R-AXIS RAPID diffractometer equipped with graphite-monochromated $\operatorname{Mo}-\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation in the ω scanning mode at room temperature. No significant decay was observed during the data collection. Data were processed on a Pentium PC, using Bruker AXS windows NT SHELXTL software package (version 5.10) [33, 34]. Neutral atom scattering factors were taken from Cromer and Waber [35]. The structures were solved by direct methods.

Table 1. Crystal data and structure refinement parameters for $\mathbf{1}$ and $\mathbf{2}$.

Identification code	$\mathbf{1}$	$\mathbf{2}$
Empirical formula	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~Pb}_{2}$	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5} \mathrm{~Pb}$
Formula weight	664.51	339.27
Crystal system	Monoclinic	Triclinic
Space group	$P 2_{1} / c$	$P \overline{1}$
Unit cell dimensions $\left(\AA \AA^{\circ},{ }^{\circ}\right)$	$8.3780(10)$	7.6017
a	$9.9054(10)$	10.8930
b	$13.6247(2)$	12.9048
c	90	114.369
α	$99.921(10)$	94.109
β	90	91.4090
γ	$1113.77(2), 4$	$969.84,4$
Volume $\left(\AA^{3}\right), Z$	3.963	3.485
Calculated density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.096	1.115
Goodness-of-fit on F^{2}	$R_{1}=0.0396$	$R_{1}=0.0402$
Final R indices $[I>2 \sigma(I)]$	$w R_{2}=0.1062$	$w R_{2}=0.1047$
R indices (all data)	$R_{1}=0.0422$	$R_{1}=0.0453$
	$w R_{2}=0.1083$	$w R_{2}=0.1075$

$R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{cs}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]^{1 / 2}$.

All non-hydrogen atoms were refined anisotropically. Hydrogens were placed geometrically and located based on a riding model. Experimental details for the structural determinations of $\mathbf{1}$ and $\mathbf{2}$ are summarized in table 1.

3. Results and discussion

3.1. Synthesis and characterization

The powder XRD patterns of $\mathbf{1}$ and $\mathbf{2}$ are consistent with the simulated ones on the basis of single-crystal structures, indicating phase purity of the synthesized samples. The differences in reflection intensities between the simulated and the experimental patterns are due to the variation in the crystal orientation of the powder samples.

The IR spectra of $\mathbf{1}$ and $\mathbf{2}$ in the range of $1544-1581 \mathrm{~cm}^{-1}$ and $1367-1380 \mathrm{~cm}^{-1}$ correspond to $v_{\text {as }}(\mathrm{C}-\mathrm{O})$ and $\nu_{\text {sym }}(\mathrm{C}-\mathrm{O})$ of carboxylate, and bands in the range of $2362-3023 \mathrm{~cm}^{-1}$ and $578-1297 \mathrm{~cm}^{-1}$ are related to $\nu(\mathrm{C}-\mathrm{H})$ of nta and oda ligands.

The TGA of $\mathbf{1}$ and $\mathbf{2}$ was carried out in air (see figure S1 in "Supplementary material"). The TGA curve shows that $\mathbf{1}$ is stable at $280^{\circ} \mathrm{C}$ and a gradual weight loss of 34.66% occurs in the range of $280-500^{\circ} \mathrm{C}$ corresponding to the loss of nta and NO_{3}^{-} (Calcd 32.83%). The remaining weight of 65.34% is attributed to the final product of PbO (Calcd 67.17%). The TGA curve of 2 shows a weight loss of 35.22% at $270-430^{\circ} \mathrm{C}$ corresponding to the loss of oda (Calcd 34.21%). The remaining weight of 64.78% is PbO (Calcd 65.79\%).

3.2. Structural description

3.2.1. Crystal structure of $\left[\mathrm{Pb}_{\mathbf{2}}(\mathbf{n t a})\right] \mathrm{NO}_{\mathbf{3}}$ (1). The asymmetric unit of $\mathbf{1}$ is composed of two leads, one nta, and one NO_{3}^{-}(figure 1). Pb 1 is hemidirected with four

Figure 1. ORTEP of the coordination environments of Pb in $\mathbf{1}$ with 30% thermal ellipsoids. All hydrogens are omitted for clarity.
coordinates $-\mathrm{N} 1, \mathrm{O} 1, \mathrm{O} 2$, and $\mathrm{O} 7[\mathrm{~Pb} 1-\mathrm{N} 1=2.525(8) \AA, \mathrm{Pb} 1-\mathrm{O} 1=2.508(7) \AA$, $\mathrm{Pb} 1-\mathrm{O} 2=2.563(7) \AA, \mathrm{Pb} 1-\mathrm{O} 7=2.442(7) \AA]$ from one nta. Pb 2 is coordinated to five oxygens from three different nta ligands and one nitrate, in which O 2 and O 3 are in the same ligand in a bidentate chelate coordination with the $\mathrm{Pb}-\mathrm{O}$ bond length 2.425(7) and $2.743(8) \AA, \mathrm{O} 4$ comes from a nitrate ion $[\mathrm{Pb} 2-\mathrm{O} 4=2.651(9) \AA]$ and O 7 A and O 1 C from a carboxyl of a different nta with the $\mathrm{Pb}-\mathrm{O}$ bond length $2.528(7)$ and $2.549(7) \AA$.

In 1, a hexanuclear unit $\mathrm{Pb}_{6}(\mathrm{nta})_{3}$ (figure 2a) is formed by the nta ligands through three bidentate-bridging carboxylates (scheme 1a) to connect Pb 1 and Pb 2 alternately. Parallel stacking units $\mathrm{Pb}_{6}(\mathrm{nta})_{3}$ build up 2-D honeycomb-like layer structure in the $x y$-plane (figure 2a). The interaction of adjacent parallel layers comes from weak $\mathrm{Pb}-\mathrm{O}$ bonds. For 1, when $\mathrm{Pb}-\mathrm{O}$ bond distance extends from 2.76 to $2.90 \AA$, two weak bonds $[\mathrm{Pb} 1-\mathrm{O} 4 \mathrm{~A}=2.816(7) \AA, \mathrm{Pb} 1-\mathrm{O} 9 \mathrm{~A}=2.762(6) \AA]$ are found. For Pb 2 , three weak bonds $[\mathrm{Pb} 2-\mathrm{O} 9 \mathrm{~A}=2.862(8), \mathrm{Pb} 2-\mathrm{O} 3=2.858(7)$, and $\mathrm{Pb} 2-\mathrm{O} 8 \mathrm{~A}=2.761(9) \AA]$ are found in the direction of the void and the coordination geometry of Pb 2 changes from hemidirected to holodirected. Through two weak bonds ($\mathrm{Pb} 1-\mathrm{O} 4 \mathrm{~A}$ and $\mathrm{Pb} 2-\mathrm{O} 3$), a 3-D supramolecular framework is formed (figure 2b). In 1, there is another weak metallophilic $\mathrm{Pb}-\mathrm{Pb}$ interaction at $4.140 \AA$ which has been reported in $\left[\mathrm{Pb}_{3}(\text { phen })_{3}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{sip})_{2}\right]_{n} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ [36].

From a topological point of view, when Pb acts as a 3 -connected node and nta are linkers, the topology of $\mathbf{1}$ is a $(6,3)$ net (figure 2c) which is connected by NO_{3} via $\mathrm{Pb} \cdots \mathrm{O}$ weak bond. As a result, the 3 -connected Pb node in the $(6,3)$ net is extended to a 4-connected node in the 3-D supramolecular framework ascribed to a 4-connected sra net with the ($4^{2} .6^{3} .8$) Schläfli symbol [37].
3.2.2. Crystal structure of $[\mathbf{P b}(\mathbf{o d a})](\mathbf{2})$. In the asymmetric unit of $\mathbf{2}$, there are three Pb 's and three oda ligands (figure 3). Pb 1 is a six-coordinate composed of three oxygens $[\mathrm{Pb} 1-\mathrm{O} 9=2.619(7), \mathrm{Pb} 1-\mathrm{O} 8=2.614(8)$, and $\mathrm{Pb} 1-\mathrm{O} 7=2.697(7) \AA]$ from one oda and three oxygens $[\mathrm{Pb} 1-\mathrm{O} 7 \mathrm{~A}=2.492(7), \mathrm{Pb} 1-\mathrm{O} 1=2.593(9)$, and $\mathrm{Pb} 1-\mathrm{O} 11=2.521(9) \AA$ A $]$

Figure 2. (a) View of the 2-D layer structure in $x y$-plane; (b) 3-D supramolecular framework of 1 formed through $\mathrm{Pb} \cdots \mathrm{O}$ weak bonds in $x z$-plane; (c) schematic description of the 2-D honeycomb-like layer structure with $(6,3)$ topology in the $x y$-plane.
(a)

(c)

(b)

(d)

Scheme 1. Coordination modes of nta and oda.

Figure 3. ORTEP of the coordination environments of Pb in 2 with 30% thermal ellipsoids. All hydrogens are omitted for clarity.
from the other three oda ligands. Pb 2 is seven-coordinate in hemidirected geometry supplied by three oxygens $\quad[\mathrm{Pb} 2-\mathrm{O} 2=2.448(7), \quad \mathrm{Pb} 2-\mathrm{O} 3=2.648(7)$, and $\mathrm{Pb} 2-\mathrm{O} 4=2.659(8) \AA$] from one oda, two oxygens $[\mathrm{Pb} 2-\mathrm{O} 2 \mathrm{~A}=2.660(7)$ and $\mathrm{Pb} 2-\mathrm{O} 6 \mathrm{~A}=2.544(8) \AA$] from two different oda ligands and two oxygens $[\mathrm{Pb} 2-\mathrm{O} 14 \mathrm{~B}=2.644(8)$ and $\mathrm{Pb} 2-\mathrm{O} 15 \mathrm{~A}=2.643(9) \AA]$ from one oda. Pb 3 is fivecoordinate with three oxygens $[\mathrm{Pb} 3-\mathrm{O} 10 \mathrm{~A}=2.547(8), \mathrm{Pb} 3-\mathrm{O} 10 \mathrm{~B}=2.631(9)$, and $\mathrm{Pb} 3-\mathrm{O} 5=2.585(7) \AA$] from three different oda ligands and two oxygens $[\mathrm{Pb} 3-\mathrm{O} 11 \mathrm{~A}=2.599(9)$ and $\mathrm{Pb} 3-\mathrm{O} 14 \mathrm{~A}=2.542(8) \AA$ from one oda. Oda shows three different $\mu_{3^{-}}, \mu_{4^{-}}$, and μ_{5}-coordination modes (scheme $1 \mathrm{~b}-\mathrm{d}$), respectively. In $\mathrm{Pb}(\mathrm{oda})\left(\mathrm{H}_{2} \mathrm{O}\right)$, only μ_{5}-coordination appeared (scheme 1b) [31], which leads to the different structure.

In 2, basic $\left[\mathrm{Pb}(2)_{2} \mathrm{O}_{2}\right]$ and $\left[\mathrm{Pb}(3)_{2} \mathrm{O}_{2}\right]$ units are formed through Pb 2 and Pb 3 atoms linked with O 2 and O 10 , respectively. The connection of $\left[\mathrm{Pb}_{2} \mathrm{O}_{2}\right]$ through O 5 contributes to the formation of $1-\mathrm{D} \mathrm{Pb}-\mathrm{O}$ chains (figure 4a) in which the intrachain distances of $\mathrm{Pb} 2 \cdots \mathrm{~Pb} 2$ and $\mathrm{Pb} 3 \cdots \mathrm{~Pb} 3$ are 4.300 and $4.223 \AA$, respectively. Two adjacent chains are linked by O6 and O10 from oda to form a 2-D layer (figure 4 b). The 2-D layer is further connected by Pb 1 -oda in a μ_{5}-fashion (scheme 1c) to form a 3-D coordination polymer (figure 4c).

When the $\mathrm{Pb}-\mathrm{O}$ bonding limit extends from 2.76 to $2.90 \AA$, five weak interactions $[\mathrm{Pb} 1-\mathrm{O} 12=2.847(7), \mathrm{Pb} 3-\mathrm{O} 5 \mathrm{~A}=2.766(8), \mathrm{Pb} 3-\mathrm{O} 8 \mathrm{~A}=2.885(8), \mathrm{Pb} 3-\mathrm{O} 4 \mathrm{~A}=2.819(9)$, and $\mathrm{Pb} 3-\mathrm{O} 13 \mathrm{~A}=2.800(7) \AA$] are found and the geometry of Pb 3 changes from hemidirected to holodirected constructing a more complicated 3-D structure.

4. Conclusion

Two lead compounds $\left[\mathrm{Pb}_{2}(\mathrm{nta})\right] \mathrm{NO}_{3}$ (1) and $[\mathrm{Pb}($ oda $)]$ (2) have been obtained with nta and oda. In 1, Pb 's combine with nta ligands to give a 2-D honeycomb-like layer

Figure 4. (a) View of the 1-D chain structure of 2; (b) view of the 2-D layer structure containing the 1-D chain; (c) view of the 3-D structure of $\mathbf{2}$ in $y z$-plane [Pb 1 (blue), Pb 2 , and Pb 3 (green)].
structure with $(6,3)$ topology, which is further connected to create the 4-connected sra net with the ($4^{2} .6^{3} .8$) Schläfli symbol through weak $\mathrm{Pb}-\mathrm{O}$ bonds. In 2, oda ligands link two unique lead centers to generate $\mathrm{Pb}-\mathrm{O}$ chains which are further extended to a $3-\mathrm{D}$ structure via oda and the third unique lead center. For $\mathbf{1}$ and 2, when the bonding limit of $\mathrm{Pb}-\mathrm{O}$ extends from 2.76 to $2.90 \AA$, weak $\mathrm{Pb}-\mathrm{O}$ bonds can be found which cause the transformation of geometry from hemidirected to holodirected for Pb 2 in 1 and Pb 3 in 2. The weak $\mathrm{Pb}-\mathrm{O}$ bonds result in a 3-D supramolecular framework for $\mathbf{1}$.

Supplementary material

CCDC-711125 and CCDC-731557 contain the supplementary crystallographic data for $\mathbf{1}$ and 2, respectively. These data can be obtained free of charge at www.ccdc.cam.ac.uk [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgment

We gratefully acknowledge the financial support of the National Nature Science Foundation of China (no. 50573030).

References

[1] M.J. Katz, V.K. Michaelis, P.M. Aguiar, R. Yson, H. Lu, H. Kaluarachchi, R.J. Batchelor, G. Schreckenbach, S. Kroeker, H.H. Patterson, D.B. Leznoff. Inorg. Chem., 47, 6353 (2008).
[2] X.R. Meng, Y.L. Song, H.W. Hou, Y.T. Fan, G. Li, Y. Zhu. Inorg. Chem., 42, 1306 (2003).
[3] K. Kavallieratos, J.M. Rosenberg, J.C. Bryan. Inorg. Chem., 44, 2573 (2005).
[4] B. Xiao, H.W. Hou, Y.T. Fan. J. Coord. Chem., 62, 1827 (2009).
[5] Y.H. Zhao, H.B. Xu, Y.M. Fu, K.Z. Shao, S.Y. Yang, Z.M. Su, X.R. Hao, D.X. Zhu, E.B. Wang. Cryst. Growth Des., 8, 3566 (2008).
[6] C. Kazak, N.B. Arslan, S. Karabulut, A.D. Azaz, H. Namli, R. Kurtaran. J. Coord. Chem., 62, 2966 (2009).
[7] E.C. Yang, J. Li, B. Ding, Q.Q. Liang, X.G. Wang, X.J. Zhao. Cryst. Eng. Comm., 10, 158 (2008).
[8] M.R.S.J. Foreman, T. Gelbrich, M.B. Hursthouse, M.J. Plater. Inorg. Chem. Commun., 3, 234 (2000).
[9] X.J. Li, R. Cao, Y.Q. Sun, W.H. Bi, X. Li, Y.Q. Wang. Eur. J. Inorg. Chem., 321 (2005).
[10] A. Aslani, A. Morsali, M. Zeller. Dalton Trans., 5173 (2008).
[11] A. Ramazani, L. Dalatyari, A. Morsali, M.Z. Kassaee. J. Coord. Chem., 62, 1784 (2009).
[12] D.J. Zhang, T.Y. Song, J. Shi, K.R. Ma, Y. Wang, L. Wang, P. Zhang, Y. Fan, J.N. Xu. Inorg. Chem. Commun., 11, 192 (2008).
[13] J. Shi, J.W. Ye, T.Y. Song, D.J. Zhang, K.R. Ma, J. Ha, J.N. Xu, P. Zhang. Inorg. Chem. Commun., 10, 1534 (2007).
[14] F. Marandi, Z. Hanasavi, H. Farzaneh. J. Coord. Chem., 62, 3332 (2009).
[15] A. Pellissier, Y. Bretonniére, N. Chatterton, J. Pécaut, P. Delangle, M. Mazzanti. Inorg. Chem., 46, 3714 (2007).
[16] M. Kourgiantakis, M. Matzapetakis, C.P. Raptopoulou, A. Terzis, A. Salifoglou. Inorg. Chim. Acta, 297, 134 (2000).
[17] J. Shi, J.N. Xu, P. Zhang, Y. Fan, L. Wang, M.H. Bi, K.R. Ma, T.Y. Song. Chem. J. Chin. Univ., 9, 1617 (2007).
[18] S. Norberg, G. Svensson, J. Albertsson. Cryst. Struct. Commun., 55, 356 (1999).
[19] L. Huang, L.P. Zhang, L.P. Jin. J. Mol. Struct., 692, 121 (2004).
[20] Q.Z. Zhang, C.Z. Lu, W.B. Yang. Z. Anorg. Allg. Chem., 630, 1550 (2004).
[21] Y. Chen, B.Q. Ma, Q.D. Liu, J.R. Li, S. Gao. Inorg. Chem. Commun., 3, 319 (2000).
[22] R. Baggio, M.T. Garland, M. Perec. Acta Crystallogr., Sect. C, 54, 591 (1998).
[23] L.J. Farrugia, R.D. Peacock, B. Stewart. Acta Crystallogr., Sect. C, 56, e432 (2000).
[24] M.G. Allego, D. Pellico, M.J. Manche, S. Romano, M.C. Torre, M.A. Sierra. Chem. Eur. J., 11, 5997 (2005).
[25] H. Li, H. Tian, M. Guo, F.Y. He, C.W. Hu. Inorg. Chem. Commun., 9, 895 (2006).
[26] X.Q. Lu, J.J. Liang, C.L. Chen, B.S. Kang, C.Y. Su. Inorg. Chem., 44, 4515 (2005).
[27] P.M. Forster, A.K. Cheetham. Micropor. Mesopor. Mater., 73, 57 (2004).
[28] L.D. Slep, R. Calvo, O.R. Nascimento, R. Baggio, M.T. Garland, O. Pena, M. Perec. Inorg. Chim. Acta, 360, 2911 (2007).
[29] M. Kilyén, A. Lakatons, R. Latajka, I. Labádi, A. Salifoglou, C.P. Raptopoulou, H. Kozlowski, T. Kiss. J. Chem. Soc., Dalton Trans., 3578 (2002).
[30] R. Baggio, M.T. Garland, G. Leyva, M. Perec, G. Polla. Inorg. Chim. Acta, 357, 2185 (2004).
[31] S. Norberg, G. Svensson, J. Albertsson. Acta Crystallogr., Sect. C, 55, 356 (1999).
[32] F. Luo, Y.X. Che, J.M. Zhang. Inorg. Chem. Commun., 11, 142 (2008).
[33] Software Packages SMART and SAINT, Siemens Analytical X-ray Instruments Inc., Madison, WI (1996).
[34] G.M. Sheldrick. SHELXTL-NT, Version 5.1, Bruker AXS Inc., Madison, WI (1997).
[35] D.T. Cromer, J.T. Waber. International Tables for X-ray Crystallography, Vol. 4, Kynoch Press, Birmingham, AL (1974), (Table 2.2A).
[36] H.P. Xiao, A. Morsali. Helv. Chim. Acta, 88, 2543 (2005).
[37] S.C. Chen, Z.H. Zhang, K.L. Huang, Q. Chen, M.Y. He, A.J. Cui, C. Li, Q. Liu, M. Du. Cryst. Growth Des., 8, 3437 (2008).

[^0]: *Corresponding author. Email: zhangping@jlu.edu.cn

